Introduction

Uptane is a standard, and does not have an official distribution or implementation.
We do provide a reference implementation in Python, and there are a number of
open source projects such as aktualizr, rust-tuf, Notary, and OTA Community
Edition implementing all or part of the Standard. In addition, commercial
Uptane offerings are available in the marketplace from HERE Technologies and
Airbiquity.

However, in any serious Uptane installation, a number of deployment decisions
will need to be made, and policies and practices for software signing and key
management will need to be implemented. Additionally, some OEMs may wish
to develop their own Uptane implementation. Here, we provide a set of best
practices for how to set up, operate, integrate, and adapt Uptane to work in
a variety of situations. We also discuss the human operations required, and
describe Uptane-compatible ways to implement some specific features that OEMs
have requested guidance or clarification on in the past.

All of these guidelines should be viewed as complementary to the official Uptane
Standard: they should be taken as advice, not gospel.

In addition, these guidelines may be used in the creation of POUFs. POUFs con-
tain the Protocols, Operations, Usage, and Formats of an Uptane implementation.
These details can be used to design interoperable Uptane implementations.

Uptane is a Joint Development Foundation project of the Linux Foundation,
operating under the formal title of Joint Development Foundation Projects, LLC,
Uptane Series.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic
Versioning.

[Unreleased]

[1.1.0] - 2021-01-08

The changes made to the Uptane Standard since its initial release on July 31,
2019, have principally addressed issues of style, clarity, and the resolution of
inconsistencies. As a result, the majority of text edits and additions seek to
correct wording in the original text that could potentially be misleading.

https://github.com/uptane/uptane
https://github.com/advancedtelematic/aktualizr
https://github.com/heartsucker/rust-tuf
https://github.com/theupdateframework/notary
https://github.com/advancedtelematic/ota-community-edition/
https://github.com/advancedtelematic/ota-community-edition/
https://www.here.com/products/automotive/ota-technology
https://www.airbiquity.com/product-offerings/software-and-data-management
https://github.com/uptane/poufs
https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html

Added

e A style guide to impose consistency in spelling, capitalization of roles and
repository names, and use of punctuation.

¢ A policy for how to link to the Standard or any specific portion of it. Any
links to the Standard from other documents should point to the latest
released version, and should link by section name, not number, as the
numbers tend to change more than the names.

e A document archive policy to add a stable copy of each version of the
Standard to the repository, starting with the initial IEEE/ISTO V.1.0.0
document.

¢ A new entry to the list of what is “Out of scope” for the Standard:
“Compromise of the packaged software, such as malware embedded in a
trusted package.”

o The option to use a counter (instead of a nonce) in the ECU Version
Report, and the purpose of the nonce in the step-by-step instructions for
preparing this report.

e A clarification that metadata is required at manufacturing time, and a
rationale for why preinstalled metadata is needed. This step enables an
ECU to authenticate that a remote repository is legitimate when it first
downloads metadata in the field, which can serve as a defense against
rollback attacks.

e A clarification that there is no need to download all metadata from the
Image repo if the Director indicates there are no new updates to install.

e A clarification about the manner in which we identify images by their hash.
It specifies that if the Primary has received multiple hashes for a given
image binary via the Targets role, then it SHALL verify every hash for
this image. This step is to be performed even if the image is identified by
a single hash as part of its filename.

o A clarification that full verification MUST be performed by Primary ECUs
and MAY be performed by Secondary ECUs.

¢ A missing reference to the Standard pointing to the Time Server description
in Uptane Deployment Best Practices.

Changed

e The name of our deployment considerations document. It is now Uptane
Deployment Best Practices to better reflect naming conventions within the
community.

e The way steps are referenced in the ECU process for verifying the latest
downloaded metadata.

¢ Several numbering references in the full verification process, and “Step 0”
in the procedure for checking Root metadata.

e Moved a Targets metadata check for unrecognized ECU IDs to a more
logical place in the series of checks.

¢ Resolved an inconsistency in how checking hashes of images is discussed.

¢ Aligned naming of example hashes with NIST policy on hash functions.
This change was also made to demonstrate that Uptane is not tied to any
particular set of algorithms.

o Specified that the ECU SHOULD check that the length of the image
matches the length listed in the metadata in the procedure for checking
hashes.

e Modified wording to make verifying a time message optional if the ECU
does not have the capacity to do so.

¢ Replaced phrases that were incorrect, or could be mistaken for another
object or function. These included the phrases target metadata, image
metadata, ECU version manifest, and Uptane Standards (plural, instead
of singular).

e Corrected additional capitalization and punctuation usages for consistency,
including imposing the consistent use of the Oxford comma in a series of
items within a sentence, and placing a comma after e.g. and i.e.

o Corrected other stylistic/formatting issues that interfered with clarity, such
as extraneous commas and use of whitespace.

e Replaced phrases that were incorrect, or could be mistaken for another
object or function. These included the phrases target metadata, image
metadata, ECU version manifest, and Uptane Standards (plural, instead
of singular).

o Switched a MAY to a SHOULD in the statement “Full verification MUST
be performed by Primary ECUs and SHOULD be performed by Secondary
ECUs,” to be consistent with references elsewhere in the Standard.

¢ Credited the document’s authorship to the Uptane Community, and
changed the organization name from the Uptane Alliance to Joint De-
velopment Foundation Projects, LLC, Uptane Series.

Removed

¢ Removed words from the opening definition section that are not used in
the Standard.

https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions

e Removed references to TAP 5 in three places in the Standard. TAP 5 has
been more or less replaced by TAP 13, but the latter has not yet been
approved.

A. Setting up Uptane repositories

This section outlines recommended procedures for the one-time operations that
an OEM and its suppliers SHOULD perform when they set up Uptane for
the first time. In particular, they SHOULD correctly configure the Director
and Image repositories, and, if used, the Time Server, so that the impact of a
repository/server compromise is as limited as possible.

Secure source of time

Without access to a secure source of time, ECUs may be prevented from receiving
the most recent updates. If the ECU’s time is set too far ahead, it will determine
that the current valid metadata is expired and thus be unable to perform an
update. If the ECU’s time is set too far behind, an attacker can freeze or replay
old metadata to the ECU. (ECUs in Uptane will not accept an earlier time than
what has been seen before and signed with the same key.)

If an ECU does not have a secure clock, we recommend the use of a Time Server
for time attestations. The following subsection describes how a Time Server can
be used in an Uptane implementation.

Time Server

As the name suggests, a Time Server is a dedicated server that is responsible for
providing a secure source of current time to ECUs that would not otherwise have
access to this information. It informs ECUs in a cryptographically secure way
through signed records and an exchange of tokens. The Time Server receives a
list of tokens from vehicles, and returns back a list of signed records containing
every token from the originally received list and at least one instance of the
current time.

If the Time Server is used, it is CONDITIONALLY REQUIRED to conform to
the following requirements:

e When the Time Server receives a sequence of tokens from a vehicle, it will
provide one or more signed responses, containing the time along with these
tokens. It MAY produce either one signed time attestation containing the
current time and all tokens, or multiple time attestations each containing
the current time and one or more tokens. All tokens should be included in
the response.

e The Time Server will expose a public interface for communicating with
Primaries. This communication MAY occur over FTP, FTPS, SFTP,
HTTP, HTTPS, or any other transport control the implementer may
choose.

e The Time Server’s key is rotated in the same manner as other roles’ keys
by listing the new key in the Director’s Root metadata. It is also listed in
the custom field of the Director repository’s Targets metadata (for partial
verification Secondaries).

Changes to the Director repository If a Time Server is in use, a represen-
tation of its public key is CONDITIONALLY REQUIRED in Director repository
Root metadata.

If a Time Server is implemented AND partial verification Secondaries are used,
the following metadata is CONDITIONALLY REQUIRED in the Director
repository’s Targets metadata:

o A representation of the public key(s) for the Time Server, similar to the
representation of public keys in Root metadata.

Listing the public key of the Time Server in Director Targets metadata is
necessary to allow partial verification Secondaries to perform Time Server key
rotation.

Changes to a Primary If the Time Server is implemented, the Primary is
CONDITIONALLY REQUIRED to use the following procedure to verify the
time. This procedure occurs after the vehicle version manifest is sent and will
fulfill the Download and check current time step of the Uptane Standard.

1. Gather the tokens from each Secondary ECU’s version report.

2. Send the list of tokens to the Time Server to fetch the current time. The
Time Server responds, as described above in the Time Server subsection,
by providing a cryptographic attestation of the last known time.

3. If the Time Server’s response meets the criteria below, update the Primary
ECU’s clock and retain the Time Server’s response for distribution to
Secondary ECUs. If it fails to meet this criteria, discard the response and
continue the procedure without an updated time. The criteria for checking
the Time Server’s response are:

4. The signature over the Time Server’s response is valid.

All the tokens provided to the Time Server are included in the response.

6. The time in the Time Server’s response is later than the last time verified
in this manner.

ot

ECU version report The ECU version report from each Secondary will
contain a token to be sent to the Time Server in whatever manner the implementer

https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html#check_time_primary

chooses. For example, the payload of the ECU version report sent from the
Primary to the Director MAY contain the tokens sent to the Time Server. In
this case, if any token is removed or changed, the signature will not match. To
detect a replay attack, each token SHOULD be unique per ECU. As we expect
that these updates will be relatively infrequent (e.g., due to a limited number of
write cycles), there will be a sufficient number of tokens to make this possible.

Changes to all ECUs After the vehicle has been assembled, ECUs MAY
receive an attestation of the current time as downloaded from the Time Server.

As the first step to verifying metadata, described in the Standard for both the
Primary and Secondaries, the ECU SHOULD load and verify the most recent
time from the Time Server using the following procedure:

1. Verify that the signatures on the downloaded time are valid.

2. Verify that the list of tokens in the downloaded time includes the token
that the ECU sent in its version report.

3. Verify that the time downloaded is greater than the previous time.

If all three steps are completed without error, the ECU is CONDITIONALLY
REQUIRED to overwrite its current attested time with the time it has just
downloaded, and to generate a new token for the next request to the Time
Server.

If any check fails, the ECU is CONDITIONALLY REQUIRED to NOT overwrite
its current attested time, to jump to the last step (Create and send version
report), and to report the error.

Changes to check Root metadata In order to prevent a new Time Server
from accidentally causing a rollback warning, the clock will be reset when
switching to a new Time Server. To do this, check the Time Server key after
updating to the most recent Root metadata file. If the Time Server key is
listed in the Root metadata and has been rotated, reset the clock used to set
the expiration of metadata to a minimal value (e.g., zero, or any time that is
guaranteed to not be in the future based on other evidence). It will be updated
in the next cycle.

Changes to partial verification Secondaries As partial verification Sec-
ondaries only check the Targets metadata from the Director repository, the Time
Server key on these ECUs will be checked when verifying the Targets metadata.
To do this, check the Time Server key after verifying the most recent Targets
metadata file. If the Time Server key is listed in the Targets metadata and has
been rotated, reset the clock used to determine the expiration of metadata to a
minimal value as described above.

https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html#check_time_primary
https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html#verify_time
https://uptane.github.io/uptane-standard/uptane-standard.html#create_version_report
https://uptane.github.io/uptane-standard/uptane-standard.html#create_version_report

What suppliers should do

metadata images

supplier-A-
supplier-A ECU-P-
: version-Q.img

: supplier-B-
supplier-B ECU-R-
: version-S.img

: supplier-C-
supplier-C : ECU-U-
version-V.img
supplier-C-
ECQU-W-*
| supplier-C-
------ & delegatas images 1o developel’ ECU-W-
—————— signs for mages version-X.img

Figure 1. Diagram showing supplier signing arrangements. Suppliers are free
to ask the OEM to sign images on its behalf (supplier A), or can sign them
itself (supplier B). In the latter case, it MAY also delegate some or all of this
responsibility to others (supplier C).

Either the OEM or a tier-1 supplier SHOULD sign for images for any ECUs
produced by that supplier, so unsigned images are never installed. This provides
security against arbitrary software attacks. An OEM will decide whether or not
a tier-1 supplier SHOULD sign its own images. Otherwise, the OEM will sign
images on behalf of the supplier, and the supplier SHOULD only deliver update
images to the OEM as outlined under the Guidelines for routine maintenance
operations section of this document. If the supplier signs its own images, it
MUST first set up roles and metadata using the following steps:

1. Generate a number of offline keys used to sign its metadata. In order to
provide compromise resilience, these keys SHOULD NOT be accessible

https://uptane.github.io/deployment-considerations/normal_operation.html
https://uptane.github.io/deployment-considerations/normal_operation.html

from the Image repository. The supplier SHOULD take great care to secure
these keys, so a compromise affects only some, but not all, of its ECUs.
The supplier SHOULD use the threshold number of keys chosen by the
OEM.

2. Optionally, delegate images to members of its organization (such as its
developers), or to tier-2 suppliers (who MAY further delegate to tier-3
suppliers). Delegatees SHOULD recursively follow these same steps.

3. Set an expiration timestamp on its metadata using a duration prescribed
by the OEM.

4. Register its public keys with the OEM using some out-of-band mechanism
(e.g., telephone calls or certified mail).

5. Sign its metadata using the digital signature scheme chosen by the OEM.

6. Send all metadata, including delegations, and associated images to the
OEM.

A tier-1 supplier and its delegatees MAY use the Uptane repository and supplier
tools to produce these signed metadata.

What the OEM should do

The OEM sets up and configures the Director and Image repositories. To host
these backend services, the OEM MAY use its own private infrastructure, or
cloud computing.

Director repository

Note that all information about setting up signing keys for this repository can
be found on the Managing signing keys and metadata operations section of this
document.

In order to provide on-demand customization of vehicles, the OEM MUST also
set up the Director repository following the guidance in the Uptane Standard.
In addition, an OEM must keep in mind the following factors. Unlike the Image
repository, the Director repository: (1) is managed by automated processes, (2)
uses online keys to sign Targets metadata, (3) does not delegate images, (4)
generally provides different metadata to different Primaries, (5) MAY encrypt
images per ECU, and (6) produces new metadata on every request from Primaries.

Steps to initialize the repository

In order to initialize the repository, an OEM SHOULD perform the following
steps:

1. Set up the storage mechanism according to the directions for the chosen
protocol. For example, the OEM might need to set up a ZFS filesystem.

https://github.com/uptane/uptane
https://github.com/uptane/uptane
https://uptane.github.io/deployment-considerations/key_management.html
https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html#director_repository

7.

Set up the transport protocol, following the details of the chosen systems.
For example, the OEM may need to set up an HTTP server with SSL/TLS
enabled.

Set up the private and public APIs to interact over the chosen transport
protocol.

Set up the Root, Timestamp, Snapshot, and Targets roles.

If the Director will be serving per-device encrypted images, copy all relevant
images from the Image repository.

Initialize the inventory database with the information necessary for the
Director repository to perform dependency resolution, or encrypt images
per ECU. This information includes: (1) metadata about all available
images for all ECUs on all vehicles, (2) dependencies and conflicts between
images, and (3) ECU keys.

Set up and run the automated process that communicates with Primaries.

The automated process MAY use the repository tools from our Reference Imple-
mentation to generate new metadata.

Roles

metadata - images

human- root

managed supplier-A-

automation- T ECU-P-

managed) 7 version-Q.img
] supplier-B-

— ECU-R-
version-S.img

timestamp I ‘ snapshot {

— supplier-C-
signs metadata for . T ECU-U-
g ool keys tor ~
______ B datogaies treom 1o . version-V.img
—— T .

S supplier-C-
ECU-W-
version-X.img

Figure 2. A proposed configuration of roles on the Director repository.

Unlike the Image repository, the Director repository does not delegate images.
Therefore, the Director repository SHOULD contain only the Root, Times-
tamp, Snapshot, and Targets roles, as illustrated in Figure 2. In the following
subsections, we will discuss how metadata for each of these roles is produced.

Private API to update images and the inventory database An OEM
SHOULD define a private API for the Director repository that is able to: (1)

https://github.com/uptane/uptane
https://github.com/uptane/uptane

upload images, and (2) update the inventory database. This API is private in
the sense that only the OEM should be able to perform these actions.

This APT SHOULD require authentication, so that each user is allowed to access
only certain information. The OEM is free to use any authentication method as
long as it is suitably strong. Examples include client certificates, a password,
or an API key encrypted over TLS. For additional security, the OEM may use
multi-factor authentication that utilizes more than one authentication method.

In order to allow automated processes on the Director repository to perform
their respective functions, without also allowing any attackers who might com-
promise the repository to tamper with the inventory database, it is strongly
RECOMMENDED that these processes should have some boundaries. That is,
the automated processes SHOULD be able to read any record in the database
and write new records, but SHOULD NOT be able to update or delete existing
records.

10

https://docs.microsoft.com/en-us/archive/blogs/kaushal/client-certificates-vs-server-certificates
https://en.wikipedia.org/wiki/Multi-factor_authentication

Public API to send updates

Primary
(1) | 4)
vehicle sends | receives
___ vehicle | linkto N
: version | timestamp
repository manifest | metadata .
timestamp
(3) metadata
Automated r snapshot
process ! metadata
t
) e
(2) reads & writes targe[s
metadata
Inventory
database encrypted
image

Figure 3. How Primaries would interact with the Director repository.

An OEM SHOULD define a public API to the Director repository so that it is
able to send updates to vehicles. This API can be designed to the wishes of
the OEM, and can use either a push or pull model to send updates updates to

Primaries. The difference between t

he models lies in whether or not a running

vehicle can be told to immediately download an update (via a push), or can wait

until a pull occurs.

Either way, the OEM can control ho

w often updates are released to vehicles. In

the push model, the OEM can send an update to a vehicle whenever it likes,

as long as the vehicle is online. In t

he pull model, the OEM can configure the

frequency at which Primaries pull updates. In most realistic cases, there will be
little practical difference between the two models.

11

There is also no significant difference between these methods when it comes to
resistance to denial-of-service (DoS) attacks or flash crowds. In the push model,
a vehicle can control how often updates are pushed to it, so that vehicles can
withstand DoS attacks, even if the repository has been compromised. In the pull
model, the repository can similarly stipulate when vehicles SHOULD download
updates, and how often.

Regardless of what model is used to send updates, as illustrated in Figure 4,
the APT SHOULD allow a Primary to: * send a vehicle version manifest (step
1) * receive a link to a Timestamp metadata file in return (step 4) * download
associated files (step 5).

The API MAY require authentication, depending on the OEM’s requirements.

Sending an update Sending an update from the Director repository to a
Primary requires the following five steps, as shown in Figure 3.

1. The Primary sends its latest vehicle version manifest to the Director
repository via an automated process.

2. The automated process performs a dependency resolution. It reads asso-
ciated information about this vehicle, such as ECU identifiers and keys,
from the inventory database. It checks that the signatures on the manifest
are correct, and adds the manifest to the inventory database. Then, using
the given manifest, it computes which images SHOULD be installed next
by these ECUs. It SHOULD record the results of this computation on the
inventory database so there is a record of what was chosen for installation.
If there is an error at any point of this step, due to incorrect signatures, or
anything unusual about the set of updates installed on the vehicle, then the
Director repository SHOULD also record it, so the OEM can be alerted to
a potential risk. Repository administrators MAY then take manual steps
to correct the problem, such as instructing the vehicle owner to visit the
nearest dealership.

3. Using the results of the dependency resolution, the automated process
signs fresh Timestamp, Snapshot, and Targets metadata about the images
that SHOULD be installed next by these ECUs. Optionally, if the OEM
requires it, it MAY encrypt images per ECU, and write them to its storage
mechanism. If there are no images to be installed or updated, then the
Targets metadata SHOULD contain an empty set of targets.

4. The automated process returns a link to the Timestamp metadata file to
the Primary.

5. The Primary downloads metadata and images using the link to this Times-
tamp metadata file.

Since the automated process is continually producing new metadata files (and,
possibly, encrypted images), these files SHOULD be deleted as soon as Primaries
have consumed them, so that storage space can be reclaimed. This MAY be

12

done by simply tracking whether Primaries have successfully downloaded these
files within a reasonable amount of time.

Image repository

Note that all information about setting up signing keys for this repository can
be found in the Managing signing keys and metadata operations section of this
document.

Finally, in order to provide compromise resilience, the OEM MUST set up the
Image repository following the guidance in the Uptane Standard. The Image
repository differs from the Director repository in a number of ways. First, it is
managed by human administrators who use offline keys to sign Targets metadata.
It also MAY delegate images to suppliers, and it provides the same metadata to
all Primaries. Lastly, it does not encrypt images per ECU, and it updates its
metadata and images relatively infrequently (e.g., every two weeks or monthly).

Steps to initialize the repository

In order to initialize the repository, an OEM SHOULD perform the following
steps. Note that, as with the Director repository, all users are expected to follow
basic set up instructions, as well as the specific set up instructions mandated by
the users’ choices of storage mechanisms and protocols. 1. Set up the storage
mechanism. 2. Set up the transport protocol. 3. Set up the private and
public APIs to interact over the chosen transport protocol. 4. Set up the Root,
Timestamp, Snapshot, and Targets roles. 5. Sign delegations from the Targets
role to all tier-1 supplier roles. The public keys of tier-1 suppliers SHOULD be
verified using some out-of-band mechanism (e.g., telephone calls or certified mail),
so that the OEM can double-check their authenticity and integrity. 6. Upload
metadata and images from all delegated Targets roles (including tier-1 suppliers).
Verify the metadata and images, and add them to the storage mechanism.

An OEM and its suppliers MAY use the repository and supplier tools from the
Reference Implementation to produce new metadata.

13

https://uptane.github.io/deployment-considerations/key_management.html
https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html#image-repository
https://github.com/uptane/uptane

Roles

metadata | images

timestamp ‘ ‘ snapshot I - targets \

su pp}iér—A—‘

signs metadata for

/
¥

version-Q.img

S ot ey for supplier-A-
------ = delegales images lo supplier-A ". ECU-P-
— signs for images [
OEM-managed |

Supplier-managed . supplier-B-*

r supplier-B-
supplier-B T ECU-R-

version-S.img

supp\jer—C-*
3 supplier-C-
supplier-C ECU-U-
T version-V.img
supplier-C-
ECU-W-*
: supplier-C-
developer ECU-W-

version-X.img

Figure 4. A proposed configuration of roles on the Image repository.

Using delegations allows the OEM to: (1) control which roles sign for which
images, (2) control precisely which Targets metadata vehicles need to down-
load, and (3) distribute, revoke, and replace public keys used to verify Targets
metadata, and hence, images. In order to set up delegations, an OEM and its
suppliers MAY use the configuration of roles illustrated in Figure 4. There are
two important points.

e The OEM maintains the Root, Timestamp, Snapshot, and Targets roles,
with the Targets role delegating images to their respective tier-1 suppliers.
e There SHOULD be a delegated Targets role for every tier-1 supplier, so
that the OEM can:
— limit the impact of a key compromise.
— precisely control which Targets metadata vehicles need to download.

The metadata for each tier-1 supplier MAY be signed by the OEM (e.g., supplier
A), or the supplier itself (e.g., suppliers B and C). In turn, a tier-1 supplier MAY
delegate images to members of its organization, such as supplier C who has
delegated a subset of its images to one of its developers, or its tier-2 suppliers
who MAY delegate further to tier-3 suppliers.

14

Every delegation SHOULD be prefixed with the unique name of a tier-1 supplier,
so that the filenames of images do not conflict with each other. Other than
this constraint, a tier-1 supplier is free to name its images however it likes.
For example, it MAY use the convention “supplier-X-ECU-Y-version-Z.img” to
denote an image produced by supplier X, for ECU model Y, and with a version
number Z.

Public API to download files An OEM SHOULD define a public API for
Primaries to use when downloading metadata and images to the Image repository.
This API can be defined in whatever manner the OEM wishes.

Depending on the OEM’s requirements, this API MAY require authentication
before Primaries are allowed to download updates. Such a choice affects only
how certain the OEM can be that it is communicating with authentic Primaries,
and not how resilient ECUs are to a repository compromise. The OEM is free
to use any authentication method.

Using images from multiple locations Uptane implementations may some-
times need to accommodate update systems where existing software comes from
several different locations. Implementers may assume that this would man-
date the use of multiple different Image repositories in any equivalent Uptane
implementation. However, this is rarely necessary, and using multiple Image
repositories (implemented via repository mapping metadata as described in
TAP-4) would require a significantly larger effort.

In almost all cases, it is preferable to have a single Image repository containing all
of the Uptane metadata, and redirect clients to download the actual images from
other locations. This can be implemented via an API on the Image repository,
or via a custom field in the Targets metadata directing the clients to one or more
alternate URL where the images are available.

An API solution could be as simple as an HTTP 3xx redirect to the appropriate
download location. More complex schemes, e.g., cases where existing legacy
repositories have a custom authentication scheme, can usually be implemented
by adding custom metadata. See the relevant section of the Standard for more
information on how custom metadata can be added.

Specifying wireline formats

In setting up an Uptane system, an implementer will need to specify how
information, such as metadata files and vehicle version manifests, should be
encoded. As a guiding principle of the Uptane framework is to give each
implementer as much design flexibility as possible, the Uptane Standard does
not specify particular data binding formats. Instead, OEMs and suppliers can

15

https://github.com/theupdateframework/taps/blob/master/tap4.md
https://github.com/theupdateframework/taps/blob/master/tap4.md
https://uptane.github.io/uptane-standard/uptane-standard.html#custom-metadata-about-images

continue to use the protocols and formats of existing update systems, or they can
select formats that best ensure interoperability with other essential technologies.

To facilitate coordination between implementations, an Uptane adopter can
choose to write a POUF, an added layer to the Standard in which an implementer
can specify choices of Protocols, Operations, Usage and Formats. A POUF
provides an easy way for an implementer to specify the elements that can ensure
interoperability. It can also be customized for the special needs of fleet owners
in a particular industry, such as taxis, car sharing networks, police forces, or the
military.

Information on writing a POUF can be found on the POUF Purpose and
Guidelines page of the Uptane website. A sample POUF, written for the Uptane
Reference Implementation, offers sample metadata written in ASN.1/DER.

B. Preparing an ECU for Uptane

At the highest level, the basic requirement for an ECU to be capable of supporting
Uptane is that it must be able to perform either full or partial verification,
and access a secure source of time. (See the Uptane Standard for official
requirements.)

To bootstrap an Uptane-capable ECU, a few things need to be provisioned into
the unit:

¢ A current set of Uptane metadata, so that the ECU is able to verify
the first set of metadata it gets from the server. The exact metadata files
required depend on whether the ECU performs full or partial verification.
Full verification ECUs need a complete set of metadata from both repos-
itories, while partial verification ECUs only need the Targets metadata
from the Director repository.

¢ A secure way to know what time it is, so the ECU cannot be tricked
into accepting expired metadata. If a time server is in use, each ECU
would need a recent time downloaded from this, and the public key of the
time server to verify it. If another source of time is being used, the ECU
must receive a fairly recent time as soon as it is powered on (or reset to
factory settings) to prevent the possibility of freeze attacks.

« ECU key(s), to sign the ECU’s version reports, and optionally to decrypt
images. These keys should be unique to the ECU, and the public keys will
need to be stored in the Director repository’s inventory database.

¢ Information about repository locations, generally in the form of a
repository mapping file. This is a metadata file that tells the ECU the
URISs of the repositories (if it is a Primary ECU), as well as which images
should be fetched from which repository. (Images that are encrypted or
customized per-device would generally come from the Director repository,
and all others from the Image repository.)

16

https://uptane.github.io/pouf.html
https://uptane.github.io/pouf.html
https://uptane.github.io/reference_pouf.html
https://uptane.github.io/reference_pouf.html
https://github.com/uptane/uptane.github.io/blob/master/reference_pouf.md#file-formats
https://uptane.github.io/uptane-standard/uptane-standard.html#build-time-prerequisite-requirements-for-ecus
https://uptane.github.io/deployment-considerations/repositories.html#time-server
https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html#version_report
https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html#repo_mapping_meta

ECU implementation choices

There are three big decisions to make about each Uptane ECU: first, whether it
will perform full or partial verification, second, whether it will use an asymmetric
or symmetric ECU key, and third, whether it will use encrypted or unencrypted
update images. Here, we offer some advice on making those choices.

Full vs. Partial verification

Uptane is designed with automotive requirements in mind, and one of the
difficulties in that space is that ECUs requiring OTA updates might have very
slow and or memory-limited microcontrollers. To accommodate those ECUs,
Uptane includes the option of partial verification. So, how do you choose between
full and partial verification for a particular ECU?

Firstly, if the ECU is a Primary ECU, partial verification is not an option.
Primaries need to perform full verification. For other ECUs, full verification is
preferable when possible, for at least two reasons:

1. Full verification is more secure. Because they do not check Image repository
metadata, partial verification ECUs could be instructed to install malicious
software by an attacker in possession of the Director repository’s Targets
key (and, of course, a way to send traffic on the relevant in-vehicle bus).

2. Full verification ECUs can rotate keys. Because partial verification is
designed for ECUs that can only reasonably check a single signature, they
do not download or process Root metadata. Since the Root metadata is the
mechanism for revoking and rotating signing keys for all other metadata,
a partial verification ECU has no truly secure way to invalidate a signing
key.

Partial verification ECUs are expected to have the Root and Targets metadata
present at the time of manufacturing or installation in the vehicle. To update the
Root metadata, the ECU SHOULD install a new image containing the metadata.
To update the Targets metadata, the ECU SHOULD follow the steps described
in the Uptane Standard. Partial verification Secondaries MAY additionally
fetch and check metadata from other roles or the Image repository if the ECU
is powerful enough to process them and you wish to take advantage of their
respective security benefits.

17

https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html#partial_verification

Symmetric vs. asymmetric ECU keys

Director repository

- Inventory
@— database

Internet-facing

------------------- Ghaeak-signature--ENarypIRBEEs - -m— e e e

Non-Internet-facing

Symmetric ECU key server private network

: Storage
@'—' mechanism

Figure 1. An arrangement that an OEM SHOULD use when using symmetric
ECU keys.

ECUs are permitted to use either symmetric or asymmetric keys. This choice is
effectively a performance vs. security trade-off. Symmetric keys allow for faster
cryptographic operations, but expose a larger attack surface because the Director
will need online access to the key. Asymmetric ECU keys are not affected by
this problem, because the Director only needs access to the ECU’s public key.

Basically, choosing symmetric keys increases the performance of the common
case (checking signatures and decrypting images), but makes disaster recovery
harder, because a compromised key server could require updating ECU keys on
every vehicle.

Symmetric key server If you choose to use symmetric ECU keys, it would
be a good idea to store the keys on an isolated, separate key server, rather than
in the inventory database. This separate key server can then expose only two
very simple operations to the Director:

1. Check the signature on an ECU version report.
2. Given an ECU identifier and an image identifier, encrypt the image for
that ECU.

Unencrypted images should be loaded onto the symmetric key server by some

18

out-of-band physical channel (for example, via USB stick).

Encryption of images on ECUs

The Director repository may encrypt images if required (see Section 5.3.2 of
the Uptane Standard). However, no Uptane implementation should support
interactive requests from an ECU for encryption. Allowing the Target ECU to
explicitly request an encrypted image at download time would not only increase
the attack surface, but could also be used to turn off encryption. This would
make it easy for attackers to reverse engineer unencrypted firmware and steal
intellectual property. Only the OEM and its suppliers should determine policy
on encrypting particular binaries, and this policy should be configured for use
by the Director repository, rather than being toggled by the Target ECU.

C. Guidelines for routine maintenance operations

In this section, we discuss how to perform regular maintenance operations. Since
these operations are carried out on a regular basis, it is important to ensure they
are performed in a systematic manner so that software updates are delivered
securely to ECUs.

Updating metadata and images

An OEM SHOULD perform the following steps whenever a new update is
delivered. First, the OEM verifies the authenticity and integrity of new images
delivered by its suppliers. Second, the OEM tests whether the images work as
intended, before releasing them to end-user vehicles.

Receiving updates from tier-1 suppliers

In order to prevent updates from being tampered with by man-in-the-middle
attackers, images SHOULD be delivered from the tier-1 supplier to the OEM in
a manner that provides an extremely high degree of confidence in the timeliness
and authenticity of the files provided. This may entail any manner of technical,
physical, and/or personnel controls.

An OEM and its suppliers MAY use any transport mechanism to deliver these
files. For example, an OEM MAY maintain a private web portal where metadata
and/or images from suppliers can be uploaded. This private server MAY be
managed by either the OEM or the tier-1 supplier, and SHOULD require
authentication to restrict which users are allowed to read and/or write certain
files. Alternatively, the OEM and its suppliers MAY use email or courier mail.

19

https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html#director_repository

If the supplier signs its own images, then it delivers all of its metadata, including
delegations, and associated images. Otherwise, if the OEM signs images on
behalf of the supplier, then the supplier needs to update only images, leaving
the OEM responsible for producing signed metadata. Regardless of which party
produces signed metadata, the release counters associated with images SHOULD
be incremented, so that attackers who may compromise the Director repository
can not rollback to obsolete images (see the Enhanced Security Practices section
of this document for more on this attack.)

Regardless of the transport mechanism used to deliver them, the OEM needs to
ensure that the images received are authentic and have not been altered. The
OEM SHOULD verify these images using some out-of-band mechanism so that
their authenticity and integrity can be double-checked. For example, to obtain a
higher degree of assurance, and for additional validation, the OEM MAY also
require the supplier’s update team to send a PGP/GPG signed email to the
OEM’s security team listing the cryptographic hashes of the new files.

Alternatively, the OEM MAY require that updates be transmitted via a digital
medium that is delivered by a bonded and insured courier. To validate the
provided files, the OEM and a known contact at the supplier MAY have a video
call in which the supplier provides the cryptographic hashes of the metadata
and/or images, and the OEM confirms that the hashes match.

An OEM SHOULD perform this verification even if a trusted transport mecha-
nism is used to ensure the mechanism has not been compromised. If the suppliers
have signed metadata, then the OEM SHOULD verify metadata and images by
checking version numbers, expiration timestamps, delegations, signatures, and
hashes, so that it can be sure that the metadata matches the images.

Testing metadata and images

After the OEM has somehow verified the authenticity and integrity of new
metadata and images received from the tier-1 supplier, the OEM SHOULD
test both before releasing them to ensure that the images work as intended on
end-user vehicles. To do so, It SHOULD use the following steps.

First, the OEM SHOULD add these metadata and images to the Image repository.
It SHOULD also add information about these images to the inventory database,
including any dependencies and conflicts between images for different ECUs.
Both of these steps are done to make the new metadata and images available to
vehicles.

Optionally, if images are encrypted on demand per ECU, then the OEM SHOULD
ensure that the Director repository has access to the original, unencrypted images,
so that automated processes running the Director repository are able to encrypt
them in the first place. It does not matter how the original, unencrypted
images are stored on the Director repository. For example, they MAY be stored

20

https://uptane.github.io/deployment-considerations/security_considerations.html

unencrypted, or they MAY be encrypted using a master key that is known by
the automated processes. See the Preparing an ECU for Uptane section of this
document for more details.

Second, the OEM SHOULD test the updated metadata and images on reserved
vehicles, before releasing them to all vehicles in circulation. This step is done
to verify whether these images work as intended. If testing is done, the OEM
MAY instruct the Director repository to first install the updated images on these
reserved vehicles.

Finally, the OEM SHOULD update the inventory database, so that the Director
repository is able to instruct appropriate ECUs on all affected vehicles on how
to install these updated images.

Backup and garbage collection for the Image repository

The OEM SHOULD regularly perform backup and garbage collection of the
metadata and images on the Image repository. This is done to ensure the OEM
is able to safely recover from a repository compromise, and that the repository
continues to have sufficient storage space. To do so, an OEM MAY use either
the following steps, or its own corporate backup and garbage collection policy.

First, an automated process SHOULD store every file on the Image repository,
as well as its cryptographic hash on a separate, offline system. A copy of the
inventory database from the Director repository SHOULD also be stored on
this offline system. This allows administrators to detect and recover from a
repository compromise.

Second, the automated process SHOULD remove expired metadata from the
Image repository to reclaim storage space. If the OEM is interested in supporting
delta updates for vehicles that have not been updated for a long time, then
the automated process SHOULD NOT remove images associated with expired
metadata, because these images MAY be needed in order to compute delta
images. (See the Delta update strategies subsection of the Customizing Uptane
section of this document).

D. Managing signing keys and metadata expira-
tion

This section addresses both setup and maintenance issues for the signing keys
used by Uptane. These include understanding the function of online vs. offline

keys, the use of signing thresholds to improve security, and the management of
metadata expiration dates.

21

https://uptane.github.io/deployment-considerations/ecus.html
https://uptane.github.io/deployment-considerations/customizations.html#delta-update-strategies

Normative references

There is much prior work on securely managing cryptographic key material.
Implementers of Uptane SHOULD follow best practices outlined in IETF RFC
4107 / BCP 107 - Guidelines for Cryptographic Key Management.

Repository keys

On both the Director and the Image repository, the OEM maintains the keys to
the Root, Timestamp, Snapshot, and Targets roles. However, for any delegated
Targets roles on the Image repository, the corresponding keys are expected to
be maintained by the supplier to which the corresponding images have been
delegated. For example, if a tier-1 supplier signs its own images, then the supplier
would maintain its own (ideally offline) keys.

Online vs. offline keys

Repository administrators SHOULD use offline keys to sign the Root metadata on
the Director repository, so attackers cannot tamper with this file after a repository
compromise. The Timestamp, Snapshot, and Targets metadata SHOULD be
signed using online keys, so that an automated process can instantly generate
fresh metadata.

On the Image repository, there are two options for signing the Timestamp
and Snapshot metadata, each with the opposite trade-off from the other. In
the first option, the OEM uses online keys, meaning automated processes for
renewing the Timestamp and Snapshot metadata indicate when new Targets
metadata and/or images are available. With this option, fresh metadata can
be instantly generated by the automated process. However, in this scenario,
attackers who have compromised a supplier’s key as well as the Image repository
could now instantly publish malicious images. If these attackers also compromise
the Director repository, then they can execute arbitrary software attacks by
selecting these malicious images on the Image repository for installation. Such
an attack could also facilitate mix-and-match attacks.

In the second option, the OEM uses offline keys to sign Timestamp and Snapshot
metadata, which reduces the risk of attackers immediately publishing malicious
images. Here again, though, there is a trade-off, in this case related to the
metadata expiration dates. If the Timestamp and Snapshot metadata expire
relatively quickly, then it may be cumbersome to use offline keys to renew their
signatures. However, if a longer expiration time is used, then a man-in-the-
middle attacker would have more time with which to execute freeze attacks,
hence defeating the purpose of the Timestamp role.

22

https://tools.ietf.org/html/rfc4107
https://tools.ietf.org/html/rfc4107
https://tools.ietf.org/html/bcp107

For most use cases, the online option may be best, but if stronger security
guarantees are desired, consider using the offline option instead for the Timestamp
and Snapshot roles.

The keys to all other roles (Root, Targets, and all delegations, which includes
suppliers’ keys) on the Image repository SHOULD be kept offline. This prevents
a repository compromise from immediately affecting full verification ECUs. It
is also a practical decision as these metadata are infrequently updated. It does
not matter where an offline key is stored (e.g., in a Hardware Security Module,
YubiKey, or a USB stick in a safe deposit box), as long as the key is not accessible
from the repository. Each key SHOULD be kept separate from others, so that a
compromise of one does not affect them all.

Key thresholds

Director repository Since a compromise of the Root role keys would have
the greatest impact on the Director repository, it SHOULD use a sufficiently
large threshold number of keys, so that a single key compromise is insufficient
to sign its metadata file. Each key MAY belong to a repository administrator.
For example, if there are 8 administrators, then at least 5 keys SHOULD be
required to sign the Root metadata file, so that a quorum is required to trust
the metadata.

The Timestamp, Snapshot, and Targets roles MAY each use a single key, because
using more keys does not provide any additional security. If these keys are online,
then attackers who compromise the repository can always use these online keys,
regardless of their number.

Metadata expiration times Since the Root role keys on the Director repos-
itory are not expected to be revoked and replaced often, its metadata file MAY
expire after a relatively long time, such as one year.

The Timestamp, Snapshot, and Targets metadata files SHOULD expire relatively
quickly, such as in a day, because they are used to indicate whether updated
images are available.

Table 1 lists an example of expiration times for metadata files on the Director
repository.

Table 1. An example of the duration of time until the metadata for a role
expires.

Image repository For the Image repository, each role MAY use as many keys
as is desired. However, the greater the impact of key compromise for a given
role, then the greater the number of keys that it SHOULD use. Also, a threshold
number of keys SHOULD be used, so that a single key compromise is generally

23

insufficient to sign new metadata. To further increase compromise resilience,
each key SHOULD be unique across all roles.

Since the Root role has the highest impact when its keys are compromised, it
SHOULD use a sufficiently large threshold number of keys. Each key MAY
belong to a repository administrator. For example, if there are 8 administrators,
then at least 5 keys SHOULD be required to sign the Root metadata file, so
that a quorum is required trust the metadata.

Since the Targets role also has a high impact when its keys are compromised, it
SHOULD also use a sufficiently large threshold number of keys. For example, 3
out of 4 keys MAY be required to sign the Targets metadata file.

Since the Timestamp and Snapshot roles have a relatively low impact when its
keys are compromised, each role MAY use a small threshold number of keys. For
example, each role MAY use 1 out of 2 keys to sign its metadata file.

Finally, each delegated Targets role SHOULD use at least 1 out of 2 keys to
sign its metadata file, so that one key is available in case the other is lost. It is
RECOMMENDED that the higher the number of ECUs that can be compromised
if a delegated Targets role is compromised, then the higher the threshold number
of keys that SHOULD be used to sign the role metadata.

Metadata expiration times The Uptane Standard requires all metadata
files to have expiration times in order to prevent or limit freeze attacks. If ECUs
know the time, then attackers cannot indefinitely replay outdated metadata,
and hence, images. In general, the expiration date for a metadata file depends
on how often it is updated. The more often that it is updated, then the faster
it SHOULD expire, so that man-in-the-middle attackers are unable to execute
freeze attacks for too long. Even if it is not updated frequently, it SHOULD
expire after a bounded period of time, so that stolen or lost keys can be revoked
and replaced.

Since the Root role keys are expected to be revoked and replaced relatively
rarely, its metadata file MAY expire after a relatively long time, such as one
year.

Table 2 lists an example of expiration times for metadata files on the Image
repository.

Table 2. An example number of keys that MAY be used by each role. Each role
uses a threshold of (n, m) keys, where n out of m signatures are required to trust
the signed metadata.

What to do in case of key compromise

An OEM and its suppliers SHOULD be prepared to handle a key compromise.
If the recommended number and type of keys are used, this should be a rare

24

event. Nevertheless, when it happens OEMs and suppliers could use the following
recovery procedures.

Director repository

Since the Director repository MUST keep at least some software signing keys
online, a compromise of this repository can lead to some security threats, such as
mix-and-match attacks. Thus, the OEM SHOULD take great care to protect this
repository and reduce its attack surface as much as possible. This MAY be done,
in part, by using a firewall. However, if the repository has been compromised,
then the following procedure SHOULD be performed in order to recover ECUs
from the compromise. Following the type and placement of keys prescribed for
the Director repository, we assume that attackers have compromised the online
keys to the Timestamp, Snapshot, and Targets roles, but not the offline keys to
the Root role.

First, the OEM SHOULD use the Root role to revoke and replace the keys to
the Timestamp, Snapshot, and Targets roles, because only the Root role can
replace these keys.

Second, the OEM SHOULD consider a manual update of all vehicles in order to
replace these keys, particularly if the vehicle has partial verification Secondaries.
This update MAY be done by requiring vehicle owners to visit the nearest
dealership. Although an OEM could replace these keys on a full verification ECU
by using over-the-air broadcasts, a manual update is recommended because: 1.
the OEM SHOULD perform a safety inspection of the vehicles, in case of security
attacks, and 2. partial verification Secondaries are not designed to handle key
revocation and replacement over-the-air. In order to update keys for partial
verification Secondaries, the OEM SHOULD overwrite their copies of the Root
metadata file, perhaps using new images.

After inspecting the vehicle, the OEM SHOULD replace and update metadata
and images on all ECUs to ensure that the images are known to be safe and that
partial verification Secondaries have replaced the keys for the Director repository.

Image repository

If the recommendations for the type and placement of keys described above
for the Image repository are followed, then a key compromise of this repository
should be an unlikely event. However, should one occur, it is a much more serious
affair. A compromise of the Image repository would allow attackers to tamper
with images without being detected, and thus execute arbitrary software attacks.
There are two cases for handling a key compromise, depending on whether the
key is managed by a delegated supplier or by the OEM.

25

Supplier-managed keys In the first case, where a tier-1 supplier or one of
its delegatees has had one or more of its keys compromised, the supplier and its
affected delegatees (if any) SHOULD revoke and replace keys. They SHOULD
update metadata, including delegations and images, and send them to the OEM.

The OEM SHOULD then manually update only affected vehicles that run
software maintained by this supplier in order to replace metadata and images.
This MAY be done by requiring vehicle owners to visit the nearest dealership. A
manual update SHOULD be done because, without trusted hardware (such as
a TPM), it is difficult to ensure that compromised ECUs can be remotely and
securely updated. After inspecting the vehicle, the OEM SHOULD replace and
update metadata and images on all ECUs so that these images are known to be
safe.

OEM-managed keys The second case, where the OEM has had a key com-
promised, can be far more serious than the first case. An attacker in such a
position may be able to execute attacks on all vehicles, depending on which keys
have been compromised. If the keys are for the Timestamp and Snapshot roles,
or the Targets or Root roles, then the OEM SHOULD use the following recovery
procedure.

First, the OEM SHOULD use the Root role to revoke and replace keys for all
affected roles. Second, it SHOULD restore all metadata and images on the Image
repository to a known good state using an offline backup. Third, the OEM
SHOULD manually update all vehicles in order to replace metadata and images.
A manual update SHOULD be done, because without trusted hardware (such as
a TPM), it is difficult to ensure that compromised ECUs can be remotely and
securely updated.

ECU keys

If ECU keys are compromised, then the OEM SHOULD manually update vehicles
to replace these keys. This is the safest course of action, because after a key
compromise, an OEM cannot be sure whether it is remotely replacing keys
controlled by attackers or the intended ECUs.

An OEM MAY use the Director repository and its inventory database to infer
whether ECU keys have been compromised. This database is used to record
vehicle version manifests that list what images an ECU has installed over time.
Therefore, an OEM MAY check for any abnormal patterns of installation that
could have been caused by an ECU key compromise. Note, however, that this
method is not perfect, because if attackers control ECU keys, then they can also
use these keys to send fraudulent ECU version reports.

26

E. Recommendations for secure customized Up-
tane implementations

In this section, we discuss how OEMs and suppliers may customize Uptane to
meet special requirements.

Scope of an update

An OEM and its suppliers MAY use an image to arbitrarily update some code
and data on an ECU, but not all. In addition, an image can be used to update
code only, data only, or any other combination of the two elements.

Examples of code updates delivered via an image include the bootloader, shared
libraries, or the application that provides the actual functions of the ECU.
Examples of data updates include setup or initialization data, such as engine
parameters, application data, such as maps, and user data, such as an address
book or system logs.

code Boot- | Shared Application
loader | libraries (e.g., infotainment)
Setup / User
initialization | Application data
data data data (e.g., address
(e.qg., engine | (e.g., maps) book,
parameters) system logs)

Figure 1. An example of how code and/or data may constitute an image.

Delta update strategies

In order to save bandwidth costs, Uptane allows an OEM to deliver updates as
delta images. A delta image update contains only the code and/or data that

27

differs from the image currently installed on the ECU. In order to use delta
images, the OEM SHOULD make the following changes.

The OEM SHOULD add two types of information used by the Director repository
to the custom Targets metadata: (1) the algorithm used to apply a delta image,
and (2) the Targets metadata about the delta image. This is done so that ECUs
know how to apply and verify the delta image. The Director repository SHOULD
also be modified to produce delta images, because Uptane does not require it to
compute deltas by default. The Director repository can use the vehicle version
manifest and dependency resolution to determine the differences between the
previous and latest images. If desired, the Director repository MAY encrypt the
delta image.

As these images are produced on demand by the Director repository, Primaries
SHOULD download all delta and/or encrypted images only from that source.
After full verification of metadata, Primaries SHOULD also check whether delta
images match the Targets metadata from the Director repository in the same
manner in which they check such metadata from the Director repository when
using non-delta images.

Finally, in order to install a delta image, an ECU SHOULD take one of the
actions described in Table 1, depending on whether or not the delta image has
been encrypted, and if the ECU has additional storage. Note that the OEM
MAY use stream ciphers in order to enable on-the-fly decryption on ECUs that
do not have additional storage. In this case, the ECU would decrypt the delta
image as it is downloaded, then follow the remainder of the steps in the third
box.

28

Is the

Is there

delta image | additional
encrypted? | storage?

Action

No

No

Download the delta image from the Primary.
Build the latest image by applying the delta image directly
to the previous working image.
If the latest image does not match the metadata about the
full unencrypted image stored on the Director repository:
o Abort the update
o Take the necessary steps to recover or reinstall
the previous working image (e.g., by downloading
a backup of the previous working image from the
Primary).

No

Yes

Keep the previous working image.
Build the latest image by copying the previous image, and
applying the delta image.

If the latest image does not match the metadata about the
full, unencrypted image stored on the Director repository:
o Recover the previous working image from

additional storage.

Yes

No

Download the delta image from the Primary, and keep it on
volatile memory.
Decrypt the delta image in-place on volatile memory.
Build the latest image by applying the delta image on
volatile memory onto the previous working image on
non-volatile memory.
If the latest image does not match the metadata about the
full, unencrypted image stored on the Director repository:
o Abort the update
o Take the necessary steps to recover or reinstall
the previous working image (e.g., by downloading
a backup of the previous working image from the
Primary).

Yes

Yes

Keep the previous working image.

Decrypt the delta image in-place.

Build the latest image by copying the previous image, and

applying the delta image.

If the latest image does not match the metadata about the

full, unencrypted image stored on the Director repository,
o Recover the previous working image from

additional storage.

Table 1.

encrypted

The actions an ECU SHOULD take to install a delta image as
determined by its access to additional storage and whether or not the image is

29

Dynamic delta updates vs. precomputed delta updates

Delta updates can be computed two different ways: dynamically for each ECU
during the installation process (dynamic delta updates), or in advance of instal-
lation by precomputing likely possible delta images (precomputed delta updates).
Both types of updates appear below in the subsection on custom installation
instructions.

Dynamic delta updates reduce the amount of data sent in each update, while
allowing for fine-grained control of what version is installed on each ECU. By
using the custom field of the Targets metadata, the Director can be configured
to specify a particular version of software for every ECU. Dynamic delta updates
allow the Director to track resources at file granularity, which can save bandwidth.

A drawback of dynamic delta updates is that, if many ECUs are updating from
the same version, computing the delta of each can result in duplicate computation
that could be time consuming or use up a lot of memory. A possible solution to
this is to use precomputed delta updates.

To send precomputed delta updates, the Director precomputes various probable
diffs and makes these available as images. The Director then specifies which
precomputed image to send to each ECU by using the custom field of Targets
metadata, as described below in the Adding dynamic directions subsection.
Precomputing the delta images has the added advantage of allowing these images
to be stored on the Image repository, which offers additional security against a
Director compromise.

Uptane in conjunction with other protocols

Implementers MAY use Uptane in conjunction with existing protocols for sending
updates to the vehicle, such as in the following scenarios:

Implementers MAY use TLS to encrypt the connection between Primaries and
the Image and Director repositories, as well to the source used to provide the
current time.

Implementers MAY use OMA Device Management (OMA-DM) to send Uptane
metadata, images, and other messages to Primaries.

Implementers MAY use Unified Diagnostic Services (UDS) to transport Uptane
metadata, images, and other messages between Primaries and Secondaries.

Any system being used to transport images to ECUs will need to be modified
only to permit transport of Uptane metadata and other messages. Note that
Uptane does not require authentication of network traffic between the Director
and Image repositories and Primaries, or between Primaries and Secondaries.

However, in order for an implementation to be Uptane-compliant, no ECU
can cause another to install an image without performing either full or partial

30

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/OMA_Device_Management
https://en.wikipedia.org/wiki/Unified_Diagnostic_Services

verification of metadata. This is done in order to prevent attackers from being able
to bypass Uptane and execute arbitrary software attacks. Thus, in an Uptane-
compliant implementation, an ECU performs either full or partial verification of
metadata and images before installing any image, regardless of how the metadata
and images were transmitted to the ECU.

Using Uptane with transport security

Uptane is designed to retain strong security guarantees even in the face of a
network attacker. This includes situations where there either is no transport
security or where the transport security is compromised by an attacker. Should
this occur, Uptane may not be able to prevent an attacker from disrupting
communication between the vehicle and the OEM (e.g., by jamming the signal
or dropping packets). However, it does prevent malicious packages from being
installed or mix-and-match attacks from being launched, and a number of other
threat scenarios from being realized. This is similar to how a network attacker
who has not compromised a key may be able to cause a TLS connection to
fail to connect or disconnect (e.g., by dropping network packets), but cannot
compromise the integrity or confidentiality of the connection.

Uptane’s security is orthogonal to security systems at other network layers, such
as transport security or data link security. However, there are several reasons why
a party may wish to use a security system at the transport layer in coordination
with Uptane:

o If a security system at the transport layer is already deployed for other
services or is effectively free to deploy, there is little reason not to use
it. For example, it may be beneficial to have a common system provide
authentication for all services in a vehicle.

o Regulations may require or recommend that security be provided at the
transport layer. Hence, a secure transport system may be required for
non-technical reasons.

o Using Uptane over a transport layer security system does not weaken
its own security properties. If the cost is low, then this may be viewed
as adding defense-in-depth, especially if the security system can improve
detection, mitigation, or reporting of network disruptions.

e Security at the transport layer provides forensic proof of origin and desti-
nation when strong mutual authentication is used. This may be necessary
for compliance with OTA update standards and various current draft
regulations.

31

Multiple Primaries

We expect that the most common deployment configuration of Uptane on vehicles
would feature one Primary per vehicle. However, there may be cases where
having multiple, active Primaries in a vehicle would be useful. One such case
would be providing redundancy if some, but not all, Primaries fail permanently.
The OEM MAY use this setup to design a failover system in which one Primary
takes over when another fails. If so, then the OEM SHOULD take note of the
following considerations in order to prevent safety issues.

It is highly RECOMMENDED that, in any given vehicle, there be a single, active
Primary. This is because using multiple, active Primaries to update Secondaries
can lead to problems in consistency, especially when different Primaries try to
update the same Secondaries. If an implementation is not careful, race conditions
could cause Secondaries to install an inconsistent set of updates, with some
ECUs installing updates from one Primary, while others take their updates from
the second Primary. This can cause ECUs to fail to interoperate.

If multiple Primaries are active in the vehicle at the same time, then each
Primary SHOULD control a mutually exclusive set of Secondaries, so that each
Secondary is controlled only by one Primary.

Atomic installation of a bundle of images

An OEM may wish to require atomic installation of a bundle of images, which
means that if one or more update in the bundle fails, none of them will be
installed. Uptane does not provide a way to guarantee such atomic installation
because the problem is out of its scope. It is challenging for ECUs to atomically
install a bundle in the face of arbitrary failure. If just one ECU fails to install
its update for any reason, such as a hardware failure, then the guarantee is
lost. Furthermore, different OEMs and suppliers already have established ways
of solving this problem. Nevertheless, we discuss several different solutions for
those who require guidance on this technique.

The simplest solution is to use the vehicle version manifest to report any atomic
installation failures to the Director repository, and then not retry installation.
After receiving the report, it is up to the OEM to decide how to respond. For
example, the OEM MAY require the owner of the vehicle to diagnose the failure
at the nearest dealership or authorized mechanic.

Another simple solution is for the Primary and/or Director to retry a bundle
installation until it either succeeds or reaches a set maximum number of retries.
This solution has the advantage of not requiring ECUs to perform a rollback if
a bundle is not fully installed, a step ECUs without additional storage cannot
perform.

If all ECUs do have additional storage, and can perform a rollback, then the

32

OEM may use a two-phase commit protocol. We assume that a gateway ECU
would act as the coordinator, which ensures that updates are installed atomically.
This technique should ensure atomic installation as long as: (1) the gateway
ECU behaves correctly and has not been compromised, and (2) the gateway ECU
does not fail permanently. It is considerably less complicated than Byzantine-
fault tolerant protocols, which may have a higher computation/communication
overhead. However, this technique does not provide other security guarantees. For
example, the gateway ECU may show different bundles to different Secondaries
at the same time.

2nd-party fleet management

Image
repository
(OEM-

* et managed)

(Allimages)

Director
repository
(Fleet-
managed)

Map file: option 1

Map file: option 2

Image
repository

e (OEM-
managed)

Director
2 repaository
(All images) (OEM-
E managed)

*

L Director
~J repository

® _____ . maps images to (Fleet-
multiple repositories managed)

Figure 2. Two options for fleet management with Uptane.

Some parties, such as vehicle rental companies or the military, may wish to

33

https://en.wikipedia.org/wiki/Two-phase_commit_protocol

exercise control on how their own fleet of vehicles are updated. Uptane offers
two options for serving these users, as illustrated in Figure 2. Choosing between
them depends on whether the fleet manager wishes to have either complete
control, or better compromise-resilience.

In the first option, which we expect to be the common case, a fleet manager
would configure the mapping metadata on ECUs such that Primaries and full
verification Secondaries would only trust an image that has been signed by both
the OEM-managed Image repository and the fleet-managed Director repository.
Partial verification Secondaries would only trust an image if it has been signed
by the fleet-managed Director repository. The upside of this option is that the
fleet manager, instead of the OEM, has complete control over which updates are
installed on its vehicles. The downside of this option is that if the fleet-managed
Directory repository is compromised, attackers can execute mix-and-match
attacks.

In the second option, a fleet manager would configure the mapping metadata on
ECUs such that Primaries and full verification Secondaries would trust an image
that has been signed by three repositories: the OEM-managed Image repository,
the OEM-managed Director repository, and the fleet-managed Director repository.
The upside of this option is that attackers cannot execute mix-and-match attacks
if they have compromised only one of the Director repositories. The downside of
this option is that updates cannot be installed on vehicles unless both the OEM
and fleet agree on which images should be installed. This agreement may require
both Director repositories to communicate using an out-of-band channel. Using
this option also means that partial verification Secondaries should be configured
to trust the Director repository managed by either the OEM or the fleet, but
not both, since these Secondaries may only be able to check for one signature.

34

User-customized updates

Vehicle
(controlled by dealership,
mechanic, fleet, or user)

Director repository
(OEM—managed)

1) Send vehicle versi ifest -
(1) Send vehicle version manifest

o

—

P
(2) Propose a set of updates

__‘_‘_‘_'__!—_

e —

—_—_—__———-h
(3) Agree with (2), or propose a
: different set of updates
:*_.____________ e
(4) Agree with (3), or propose a
h——____gﬁgl_'ﬁﬂt set of updates..
__—_‘_‘_‘_‘_‘—\—_

T

—_—

Time

Figure 3. An OEM MAY allow a third party to negotiate which updates are
installed.

In its default implementation, Uptane allows only the OEM to fully control
which updates are installed on which ECUs on which vehicles. Thus, there is
no third party input about updates from a dealership, mechanic, fleet manager,
or the end-user. There are very good reasons, such as legal considerations, for
enforcing this constraint. However, sharing this capability exists to the extent
that the OEM wishes to make it available. We discuss two options for doing so.

In the first option, an OEM MAY elect to receive input from a third party as to
which updates should be installed. The process is illustrated in Figure 3.

Step 1: The vehicle submits its vehicle version manifest to the Director repos-
itory controlled by the OEM. The manifest lists which updates are currently
installed.

Step 2: The Director repository performs dependency resolution using the
manifest, and proposes a set of updates.

Step 3: The third party either agrees with the OEM, or proposes a different set
of updates. This step SHOULD be authenticated (e.g., using client certificates,
or username and password encrypted over TLS), so that only authorized third

35

parties are allowed to negotiate with the OEM.

Step 4: The OEM either agrees with the third party, or proposes a different set
of updates.

The third and fourth steps MAY be repeated up to a maximum number of retries,
until both the OEM and the third party agree as to which updates should be
installed.

In the second option, the third party MAY choose to override the root of trust for
ECUs, provided that the OEM makes this possible. Specifically, the third party
may overwrite the map and Root metadata file on ECUs, so that updates are
trusted and installed from repositories managed by the third party instead of the
OEM. The OEM may infer whether a vehicle has done so by using its inventory
database to see if the vehicle has recently been updated from its repositories.
The OEM MAY choose not to make this option available to third parties by, for
example, using a Hardware Security Module (HSM) to store Uptane code and
data, so that third parties cannot override the root of trust.

ECUs without filesystems

Currently, implementation instructions are written with the implicit assumptions
that: (1) ECUs are able to parse the string filenames of metadata and images, and
that (2) ECUs may have filesystems to read and write these files. However, not
all ECUs, especially partial verification Secondaries, may fit these assumptions.
There are two important observations:

First, filenames need not be strings. Even if there is no explicit notion of “files”

on an ECU, it is important for distinct pieces of metadata and images to have
distinct names. This is needed for Primaries to perform full verification on
behalf of Secondaries, which entails comparing the metadata for different images
for different Secondaries. Either strings or numbers may be used to refer to
distinct metadata and images, as long as different files have different file names
or numbers. The Image and Director repositories can continue to use file systems,
and may also use either strings or numbers to represent file names.

Second, ECUs need not have a filesystem in order to use Uptane. It is only
important that ECUs are able to recognize distinct metadata and images by
using either strings or numbers as file names or numbers, and that they can
allocate different parts of storage to different files.

Custom installation instructions for ECUs
Most inputs to ECUs are delivered as signed Targets files, stored on the Image

directory, and then sent to the ECU by the Director. However, there may be
some cases where the inputs required for a particular customization cannot be

36

configured to follow this standard signing process. Variations in input may be
due to not knowing the input in advance, or a need to customize instructions
for each vehicle. Examples of such inputs could be a command line option that
turns on a feature in certain ECUs, a configuration sent by a Director repository
to an ECU, or a Director doing a dynamic customization for an ECU. We can
collectively call all these non-standard inputs “dynamic directions.” Uptane
allows ECUs to access dynamic directions in two different ways, each having
particular advantages for different use cases.

Accessing dynamic directions through signed images from the Direc-
tor repository

The first option for providing dynamic directions is to slightly modify the
standard delivery procedure described above. The Director repository would
still send a signed image to the ECU, but this file would not be stored on — or
validated by — the Image repository. As the Image repository is controlled by
offline keys, it cannot validate a file created dynamically by the Director.

Even though the Image repository cannot sign the file, this modification still
provides some security protections. The ECU would continue to have rollback
protection for a file sent this way, as a release counter will still be included in
the metadata and incremented for each new version. If additional validation is
needed, the file could be put on multiple repositories created for this purpose.
These repositories could behave similar to the Director repository, but would all
have separate keys to allow for additional security. The Primary ECU will be
aware of these extra repositories so it can check for consistency by downloading
and comparing the image from all repositories.

Adding dynamic directions to the custom field of Targets metadata

Another way to provide dynamic directions is to use the custom field of the
Targets metadata file. This field provides the option to include custom inputs
to individual ECUs. Using the custom field is an especially good option for
managing small variations in the existing image. For example, a compilation flag
to enable a navigation feature might be set on some ECUs, but not on others.
The custom field could contain dynamic directions, and additional subfields
would help determine for which ECUs the direction is intended. In this flag
example, the Director can put the ECU ID and the flag into the custom field so
the flag will be used during the installation process only on that particular ECU.
This custom field can then be included in the Targets metadata received by all
ECUs. The intended ECU would be able to check for this flag and use it during
an installation or update to enable the navigation system.

However, note that using this method of providing dynamic directions means
that a compromise of the Director repository might be able to cause ECUs to

37

misconfigure their images. One way to mitigate this risk would be to require the
Image repository to sign off on exactly the same directions using its own custom
Targets metadata. However, this is difficult to achieve considering that such
directions are supposed to be dynamic in the first place. Therefore, proceed, if
necessary, with caution.

Picking an option: security tradeoff

In choosing whether to send dynamic directions through the custom field of the
Targets metadata from either the Director or the Image repository, one needs to
consider how security-sensitive the receiving ECU may be.

Using the Director repository to encode dynamic directions provides more
flexibility, as directions can be made or changed on demand. However, there
is a significant trade off in terms of security. Should the Directory repository
be compromised, attackers would have this same power. This has important
ramifications for ECUs that perform partial, or even full, verification. On the
other hand, using the Image repository provides the opposite tradeoff. Dynamic
directions are more secure, but offer less flexibility to make changes.

It is important to consider this tradeoff when deciding how to send dynamic
directions. If the ECU is security critical, these directions should be sent using
the custom field of Targets metadata and stored on the Image repository. In any
case, using either repository should not result in significant bandwidth costs for
ECUs, as ECUs that perform partial verification should continue to receive only
directions for itself from the Director repository.

Location-based updates

Certain types of updates, like maps, rules-of-the-road, or traffic notifications, are
only relevant to vehicles within a specific location. These location-based updates
require that a device be able to report its location in some way. For example, the
device could obtain its location by using a GPS sensor and report it as custom
metadata in the vehicle version manifest using the “geo:” UI scheme defined in
RFC 5870.

Such a system would require a way to reference location for all applicable targets
in the custom section of the Targets metadata for the Image repository. The
Director would then be responsible for identifying devices whose locations match
those of targets on the Image repository. If a match is found, the Director
SHOULD update its Targets metadata to instruct the relevant devices to install
the location-based updates appropriate for their positions.

It is possible that the vehicle’s position may have changed by the time the vehicle
receives a location-based update. The device MAY check that its current position

38

https://tools.ietf.org/html/rfc5870

matches that of the target before installation, and the implementer MAY decide
to abort the update if the location no longer matches.

F. Performing exceptional operations

In this section, we discuss operations that are generally performed only in
exceptional cases. As performing these operations may have security implications
for software updates, they should be carried out with great care.

Rolling back software

Sometimes an OEM may determine that the latest updates are less reliable
than previous ones. In that case, it may be necessary to roll back to a previous
update.

By default, Uptane does not allow updates to be rolled back and enforces this
action with two mechanisms. First, Uptane rejects any new metadata file with
a version number lower than the one contained in the previous metadata file.
Second, Uptane will reject any new image associated with a release counter that
is lower than the release counter of the previous image in the previous Targets
metadata file. The first mechanism prevents an attacker from replaying an old
metadata file. The second mechanism prevents an attacker who compromises
the Director repository from being able to choose old versions of images, despite
being able to sign new metadata. See Figure 1 for an example.

39

targets: { targets: {
“bar.img™ { “bar.img”: {
“custom”: { “custom”: {
“release_counter™: 0 “release_counter”: 0

} }

} }

"foo.img™ { “foo.img”: {
“custom™ { “custom”: {
“release_counter”: 1 ‘release_counter”: 0

} }
} }

“version”: 2 “version”: 1

Figure 1. Uptane prevents rollback attacks by rejecting older: (1) metadata
files, and/or (2) images.

There are at least two ways to allow rollbacks, each with different advantages
and disadvantages.

In the first option, an OEM MAY choose to never increment the release counters
of images (see Figure 2). Uptane will accept any new image associated with a
release counter, as long as it is equal to the release counter of the previous image
in the previous Targets metadata file. If release counters are never incremented,
then all images would have the same release counters. In this situation, an
ECU would accept the installation of any compatible image referred to in the
new Targets metadata. (See the Enhanced Security Practices section of this
document for more details.)

40

https://uptane.github.io/deployment-considerations/security_considerations.html

{ {

targets: { targets: {
“bar.img™ { “bar.img”: {
“custom”: { “custom”: {
“release_counter™: 0 “release_counter”: 0

} }

L 13
“foo.img”: { # “foo.img”: {

“custom™ { “custom”: {
‘release_counter”: 0 ‘release_counter”: 0

} }
} }

“version”: 1 “version”: 2

} }

Figure 2. Uptane allows the installation of images that have the same release
counter as what is currently installed.

The advantage to this method is that it is simple. It allows the OEM to easily
install interchangeable versions of the same image. In the example shown in
Figure 2, “foo.img” may simply be a version of “bar.img” containing diagnostic
functions. Therefore, the OEM may install either “bar.img” or “foo.img” on
the same ECU. The disadvantage of this method is that it allows attackers who
compromise the Director repository to install obsolete images they can use to
execute rollback attacks. Therefore, this method SHOULD NOT be used.

In the second option, an OEM increments the release counter of an image
whenever it is critical that an ECU not install images with lower release counters.
In the example in Figure 3, if an ECU installs “foo.img,” then it cannot install
“bar.img.” This is done to prevent the installation of compatible images with
lower release counters that have known security vulnerabilities, rather than newer
images in which these vulnerabilities have been fixed.

41

{ {

targets: { targets: {
“bar.img™ { “bar.img”: {
“custom”: { “custom”: {
“release_counter™: 0 “release_counter”: 0

} }

L 13
“foo.img”: { # “foo.img”: {

“custom”: { “custom”: {
“release_counter”: 0 ‘release_counter”: 1

} }
} }

“version”: 1 “version”: 2

} }

Figure 3. Uptane forbids the installation of images with lower release counters
than what is currently installed.

The advantage to this method is that it prevents rollback attacks in a situation
where attackers compromise only the Director repository. However, there are
two disadvantages. First, the release counters for images have to be maintained,
even if role B now signs for images previously signed by role A. This is because
release counters are always compared to previous Targets metadata files. Second,
it is more cumbersome to roll back updates, or deliberately cause ECUs to install
older images, because the release counters of these older images are incremented
in the new Targets metadata for the Image repository with offline keys. However,
this method SHOULD be preferred, because it is more secure. See the Enhanced
Security Practices section of this document for more techniques that can be used
to limit rollback attacks when the Director repository is compromised.

Adding, removing, or replacing ECUs
Sometimes, it may be necessary for a dealership or mechanic to replace a

particular ECU in a vehicle, or even add or remove one. This will mean that
the vehicle version manifest will change — even if the replacement ECU is an

42

https://uptane.github.io/deployment-considerations/security_considerations.html
https://uptane.github.io/deployment-considerations/security_considerations.html

identical model, it will have a different ECU key. The Director may detect this
as an attack, as an ECU suddenly using a new signing key could be indicative of
a compromised ECU.

We recommend dealing with this use case by establishing an out-of-band process
that allows authorized mechanics to report a change to the OEM. By doing so,
the change in ECU configuration is recorded in the inventory database. Exactly
what that process looks like will depend on the size of the manufacturer and the
relative frequency of ECU replacements.

e A small luxury automaker might simply choose to allow authorized me-
chanics to send an email or make a phone call to an aftersales support
person with the details of the new ECU, and have that person manually
enter the details.

e A larger automaker might choose to deploy a dealer portal (i.e., a private,
authenticated website) to allow authorized service centers to enter the
details of the new ECU configuration themselves.

Another option for updating the ECU configuration is to have a process that
temporarily “unlocks” an ECU configuration, allowing the vehicle’s Primary to
directly report its new configuration (as opposed to having the mechanic enter
the details of the replaced ECU). There is a tradeoff here. While it streamlines
the repair process, automating this step increases the risk that a real attack
could go unnoticed.

Note, however, that these are only recommendations. Uptane does not prescribe
a protocol for this use case, because it is an orthogonal problem to software
update security. The advantage of this approach is that an OEM is free to solve
this problem using existing solutions that it may already have in place.

Aftermarket ECUs

A slightly more difficult use case to deal with are aftermarket ECUs — for
example, 3rd-party replacement parts, or add-on ECUs that add functionality
for commercial fleet management. One approach is to work with the ECU
manufacturer and treat them like any other tier-1 supplier. (The addition of the
aftermarket ECU would be managed in one of the ways recommended in the
previous subsection.) However, this may not be economically feasible in many
cases. The easiest alternative is to simply exclude the aftermarket ECU from
receiving OTA updates.

Some aftermarket ECUs, such as those designed for fleet management or moni-
toring, may have their own independent internet connection, and thus do not
need to be integrated into the OEM’s update system at all.

43

Adding or removing a supplier

Due to changes in business relationships, an OEM may need to add or remove a
tier-1 supplier from its repositories.

To add a tier-1 supplier, OEMs SHOULD use the following steps. All three steps
should be performed using the guidelines in the Normal Operating Procedures
section of this document. First, if the supplier signs its own images, then the
OEM SHOULD add a delegation to the supplier on the Image repository. Second,
the supplier SHOULD deliver metadata and/or images to the OEM. Finally, the
OEM SHOULD add the metadata and images to its repositories, possibly test
them, and then release them to the affected vehicles.

To safely remove a tier-1 supplier, the OEM SHOULD use the following steps.
First, it SHOULD delete the corresponding delegation from the Targets role
on the Image repository, as well as all metadata and images belonging to that
supplier, so that their metadata and images are no longer trusted. Second, it
SHOULD also delete information about the supplier from the Director repository,
such as its images, as well as its dependencies and conflicts, so that the Director
repository no longer chooses these images for installation. In order to continue
to update vehicles with ECUs originally maintained by this supplier, the OEM
SHOULD replace this supplier with another delegation, either maintained by
itself or by another tier-1 supplier.

Note that to comply with the Standard, the Snapshot metadata must continue
to list the removed delegation in order to prevent a rollback attack. However,
if the OEM rotates the Timestamp and Snapshot keys (and pushes new Root
metadata with the new keys), the delegation may be safely removed from the
Snapshot metadata. As the ECU will need to clear out any existing Snapshot
metadata due to the rotation, the check that each Targets metadata filename
listed in the previous Snapshot metadata is also listed in the new Snapshot
metadata will (trivially) not apply.

Tier-1 suppliers are free to manage delegations to members within its own
organizations, or tier-2 suppliers (who may delegate, in turn, to tier-3 suppliers,
and so on), without involving the OEM.

Key compromise

See Key Management.

G. Enhanced security practices

Uptane is a flexible system and therefore can be adapted for increased security
if an OEM or supplier deems it necessary. In this section, we discuss several of

44

https://uptane.github.io/deployment-considerations/normal_operation.html
https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html#check_snapshot
key_management.html

these techniques.

Restricting image installation with custom hardware IDs

Before an ECU installs a new image, it SHOULD always check the hardware
type of the image. This can prevent attackers from causing an ECU to install
arbitrary images it was not intended to have. Furthermore, an OEM and/or
its suppliers SHOULD include certain information about images in the Targets
metadata to prevent the installation of these arbitrary images if the Director
repository should be compromised.

Consider the following example in which attackers have compromised the Director
repository. If certain mitigating steps have been taken, such as using release
counters, they cannot rollback software updates. Furthermore, without an
additional key compromise, attackers cannot cause arbitrary software attacks
on Primaries and full verification Secondaries. However, attackers can cause
the ECUs of one hardware type to install images intended for another hardware
type. To use an analogy, this is similar to causing Linkedsys routers to install
images intended for NetGear routers.

Simply having ECU identifiers (e.g., serial numbers) specified in the Targets
metadata signed by the Director repository does not solve this problem, because:
(1) they are used by the Director repository only to instruct which ECU should
install which image, and (2) they are not specified in the Targets metadata
signed on the Image repository because it is impractical to list all ECU identifiers
that pertain to an image.

In order to avoid this problem, the custom Targets metadata about unencrypted
images on the Image repository SHOULD always include hardware identifiers.
A hardware identifier allows an OEM and/or its suppliers to succinctly capture
an entire class of ECUs without listing each of their identifiers. Note that the
OEM and/or its suppliers SHOULD ensure that hardware identifiers are unique
across different hardware types of ECUs, so that attackers who compromise the
Director repository cannot cause ECUs of one type to install images intended
for another type.

Preventing rollback attacks in case of Director compromise

In the Performing Exceptional Operations section of this document, we discuss
how an OEM and/or its suppliers SHOULD use release counters in order to
prevent rollback attacks in case of a Director repository compromise. To further
limit the impact of such an attack scenario, the OEM and/or its suppliers
SHOULD also use the following recommendations.

First, they SHOULD diligently remove obsolete images from new versions of
Targets metadata files uploaded to the Image repository. This can prevent

45

https://www.linksys.com/us/
https://www.netgear.com/
https://uptane.github.io/deployment-considerations/exceptional_operations.html#rolling-back-software

attackers who compromise the Director repository from being able to choose
these obsolete images for installation. This method has a downside in that it
complicates the update process for vehicles that require an intermediate update
step. For example, an ECU has previously installed image A, and C is the latest
image it should install. However, the ECU should install image B before it
installs C, and B has already been removed from the Targets metadata on the
Image repository in order to prevent or limit rollback attacks. Thus, the OEM
and/or its suppliers needs to carefully balance these requirements in making the
decision to remove obsolete images from the Targets metadata.

Second, they SHOULD decrease the expiration timestamps on all Targets meta-
data uploaded to the Image repository so they expire more quickly. This can
prevent attackers who compromise the Director repository from being able to
choose these obsolete images. Unfortunately, Targets metadata that expires
quickly needs to be updated more frequently. This may make it harder to prevent
accidental freeze attacks, as an ECU needs to be able to update both the time
from the Time Server and metadata from the Image repository. In the event that
the ECU is able to update metadata, but not the time, it can continue working
with the previously installed image, but would be unable to update to the latest
image. The Director repository can detect this unlikely event using the vehicle
version manifest. In this case, the OEM MAY require the owner of the vehicle
to diagnose the problem at the nearest dealership or authorized mechanic.

Broadcasting vs. unicasting metadata inside the vehicle

An implementation of Uptane MAY have a Primary unicast metadata to Secon-
daries. In this scenario, the Primary would send metadata separately to each
Secondary. However, this method is vulnerable to network disruptions and can
cause ECUs to see different versions of metadata released by repositories at
different times.

In order to mitigate this problem, it is RECOMMENDED that a Primary
use a broadcast network, such as CAN, CAN FD, or Ethernet to transmit
metadata to all of its Secondaries at the same time. Note that this still does
not guarantee that ECUs will always see the same versions of metadata at any
time. This is because network traffic between Primaries and Secondaries may
still get disrupted, especially if they are connected through intermediaries, such
as gateways. Nevertheless, it should still be better than unicasting.

If an update is intended to be applied to a gateway itself, it should be updated
either before or after (but not during) update operations to ECUs on the other
side of the gateway. This can help to avoid the disruption described above.

46

Dependencies and conflicts between ECUs

When installing an image on any given ECU, there may be dependencies, or a set
of other images that SHOULD also be installed on other ECUs in order for the
image to work. Likewise, the same image and ECU may have conflicts, or a set
of other images that SHOULD NOT be installed on other ECUs. Dependency
resolution is the process of determining which versions of the latest images and
their dependencies can be installed without conflicts.

Checking dependencies and conflicts There are three options for checking
dependencies and conflicts:

1. Only ECUs check dependencies and conflicts. This information
should be included in the Targets metadata on the Image repository,
and should not add substantially to bandwidth costs. The upside is
that, without offline keys, attackers cannot cause ECUs to fail to satisfy
dependencies and prevent conflicts. The downside is that it can add to
computational costs, because dependency resolution is generally an NP-
hard problem. However, it is possible to control the computational costs if
some constraints are imposed.

2. Only the Director repository checks dependencies and conflicts.
This is currently the default on Uptane. The upside is that the computa-
tional costs are pushed to a powerful server. The downside is that attackers
who compromise the Director repository can tamper with dependency res-
olution.

3. Both ECUs and the Director repository check dependencies and
conflicts. To save computational costs, and avoid having each ECU
perform dependency resolutions, only the Primaries and full verification
Secondaries may be required to double-check the dependency resolution
performed by the Director repository. Note that this is not an NP-hard
problem because these ECUs simply need to check that there is no conflict
between the Director and Image repositories. The trade-off is that when
Primaries are compromised, Secondaries have to depend on the Director
repository.

Managing dependencies and conflicts Generally speaking, the Director
repository SHOULD NOT issue a new bundle that may conflict with images
listed on the last vehicle version manifest, and therefore known with complete
certainty to have been installed on the vehicle. This is because a partial bundle
installation attack could mean the ECUs have only partly installed any images
sent after the last vehicle version manifest. If the Director repository is not
careful in handling this issue, the vehicle may end up installing conflicting images
that will cause ECUs to fail to interoperate.

47

https://research.swtch.com/version-sat
https://research.swtch.com/version-sat

Director repository | Vehicle

ECU A: A-1.0.img
ECU B: B-1.0.img

ECU A: A-1.0.img
ECU B: B-1.0.img

ECU A: A-2.0.img

ECU B: B-2.0.img oy
a b

ECU A: A-3.0.img

ECU B: B-3.0.img S

Figure 1. A series of hypothetical exchanges between a Director repository and
a vehicle.

Consider the series of messages exchanged between a Director repository and a
vehicle in Figure 1.

¢ In the first bundle of updates, the Director repository instructs ECUs A
and B to install the images A-1.0.img and B-1.0.img, respectively. Later,
the vehicle sends a vehicle version manifest stating that these ECUs have
now installed these images.

e In the second bundle, the Director repository instructs these ECUs to
install the images A-2.0.img and B-2.0.img, respectively. However, for
some unknown reason, the vehicle does not send a new vehicle version
manifest in response.

e In the third bundle of updates, the Director repository instructs these

48

ECUs to install the images A-3.0.img and B-3.0.img. However, it has
not received a new vehicle version manifest from the vehicle stating that
both ECUs have installed the second bundle. Furthermore, the Director
repository knows that B-1.0 and C-3.0 conflict with each other. The only
thing the Director repository can be certain of is that B has installed
either B-1.0 or B-2.0, and C has installed either C-1.0 or C-2.0. Thus, the
Director repository SHOULD NOT send the third bundle to the vehicle,
because B-1.0 from the first bundle may still be installed, which would
conflict with C-3.0 from the third bundle.

e Therefore, the Director repository SHOULD NOT issue the third bundle
until it has received a vehicle version manifest from the vehicle that confirms
that ECUs B and C have installed the second bundle, which is known to
contain images that do not conflict with the third bundle.

e In conclusion, the Director repository SHOULD NOT issue a new bundle
until it has received confirmation via the vehicle version manifest that no
image known to have been installed conflicts with the new images in the
new bundle.

If the Director repository is not able to update a vehicle for any reason, then it
SHOULD raise the issue to the OEM.

ASN.1 decoding

If an OEM chooses to use ASN.1 to encode and decode metadata and other
messages, then it SHOULD take great care in decoding the ASN.1 messages.
Improper decoding of ASN.1 messages may lead to arbitrary code execution
or denial-of-service attacks. For example, see CVE-2016-2108 and attacks on a
well-known ASN.1 compiler.

In order to avoid these problems, whenever possible OEMs and suppliers
SHOULD use ASN.1 decoders that have been comprehensively tested via unit
tests and fuzzing.

Furthermore, following best practices, we recommend that DER encoding is used
instead of BER and CER, because DER provides a unique encoding of values.

Balancing EEPROM performance and security

Many ECUs use EEPROM which, practically speaking, can be written to only
a limited number of times. This in turn can impose limits on how often these
ECUs can be updated.

In order to analyze this problem, let us recap what new information should be
downloaded in every software update cycle:

49

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2108
https://arstechnica.com/information-technology/2016/07/software-flaw-puts-mobile-phones-and-networks-at-risk-of-complete-takeover/

1. The Primary writes and sends the latest vehicle version manifest to the
Director repository.

2. If a Time Server is used, all Secondaries write and send fresh tokens to the
Primary.

3. All ECUs download, verify, and write the latest downloaded time from the
Time Server, or whatever source is used to provide the current accurate
time.

4. All ECUs download, verify, and write metadata from the Director and/or
Image repositories.

5. At some point, ECUs download, verify, and write images.

6. At some point, ECUs install new images. Then, they sign, and write the
latest ECU version reports.

Let us make two important observations.

First, it is not necessary to continually refresh the time apart from a software
update cycle. This is because: (1) the time may not be successfully updated, (2)
an ECU SHOULD be able to boot to a valid image, even if its metadata has
expired, and (3) it is necessary to check only that the metadata for the latest
downloaded updates has not expired.

Indeed, there is a risk to implementers updating time information too frequently.
For example, if time information is made once per day, it can cause flash devices
with 10K write lifetime to wear out within roughly 27 years. If valid time
metadata is always written to the same block, an admittedly unlikely scenario
since the old metadata is likely to be retained before the new metadata is
validated, this may cause unacceptable wear. Implementers should seriously
consider both the lifetime usage of their devices and their likely update patterns
if using technologies with limited writes.

However, there is a trade-off between frequently updating the current time (and
thus, exhausting EEPROM), and the efficacy of the system to prevent freeze
attacks from a compromised Director repository. If it is essential to frequently
update the time to prevent freeze attacks, and EEPROM must be used, there
are ways to make that use more efficient. For example, the ECU may write data
to EEPROM in a circular fashion that can expand its lifetime of wear.

Second, it is not necessary for ECUs to write and sign an ECU version report
upon every boot or reboot cycle. At a minimum, an ECU should write and sign
a new ECU version report only upon the successful verification and installation
of a new image.

Balancing security and bandwidth
When deploying any system, it is important to think about the costs involved.

Those can roughly be partitioned into computational, network (bandwidth),
and storage. This subsection gives a rough sense of how those costs may vary

50

depending upon the deployment scenario employed. The numbers quoted are
not authoritative, but do express order of magnitude costs.

A Primary will end up retrieving and verifying any updated metadata from the
repositories it communicates with, which usually means an Image repository
and a Director repository will be contacted. Whenever an image is added to
the Image repository, a Primary will download a new Targets, Snapshot, and
Timestamp metadata file. The Root file is updated less frequently, but when
this is done, it may also need to be verified. Verifying these repositories and
roles entails checking a signature on each of the files. Whenever the vehicle is
requested to install an update, the Primary also receives a new piece of metadata
for the Targets, Snapshot, and Timestamp roles, and on rare occasions, from
the Root file. As noted above, this verification requires a signature check. A
Primary must also compute the secure hash of all images it will serve to ECUs.
The previous known good version of all metadata files must be retained. It is
also wise to retain any images until Secondaries have confirmed installation.

A full verification Secondary is nearly identical in cost to a Primary. The biggest
difference is that it has no need to store, retrieve, or verify an image that it is
not destined to receive. However, other costs are fundamentally the same.

A partial verification Secondary merely retrieves Targets metadata when it
changes, and any images it will install. This requires one signature check and
one secure hash operation per software installation.

Note also that, if used, Time Server costs are typically one signature verification
per ECU per time period of update (e.g., daily). This cost varies based upon
the algorithm and thus its measurement can only be estimated based upon the
algorithm.

Using encrypted images on the Image repository

Images stored on the Image repository may have previously been encrypted or
not, at the discretion of the implementer. The Standard does not explicitly
mention using encrypted images on the Image repository because Uptane treats
these blobs exactly the same as unencrypted blobs. It only imposes special
requirements on images that are per-ECU encrypted on the Director repository.
Therefore, there is no reason that encrypted images cannot be on the Image
repository should an implementer wish to use them.

o1

	Introduction
	Changelog
	[Unreleased]
	[1.1.0] - 2021-01-08
	Added
	Changed
	Removed

	A. Setting up Uptane repositories
	Secure source of time
	Time Server

	What suppliers should do
	What the OEM should do
	Director repository
	Image repository

	Specifying wireline formats

	B. Preparing an ECU for Uptane
	ECU implementation choices
	Full vs. Partial verification
	Symmetric vs. asymmetric ECU keys
	Encryption of images on ECUs

	C. Guidelines for routine maintenance operations
	Updating metadata and images
	Receiving updates from tier-1 suppliers
	Testing metadata and images

	Backup and garbage collection for the Image repository

	D. Managing signing keys and metadata expiration
	Normative references
	Repository keys
	Online vs. offline keys
	Key thresholds

	What to do in case of key compromise
	Director repository
	Image repository
	ECU keys

	E. Recommendations for secure customized Uptane implementations
	Scope of an update
	Delta update strategies
	Dynamic delta updates vs. precomputed delta updates

	Uptane in conjunction with other protocols
	Using Uptane with transport security
	Multiple Primaries
	Atomic installation of a bundle of images
	2nd-party fleet management
	User-customized updates
	ECUs without filesystems
	Custom installation instructions for ECUs
	Accessing dynamic directions through signed images from the Director repository
	Adding dynamic directions to the custom field of Targets metadata
	Picking an option: security tradeoff

	Location-based updates

	F. Performing exceptional operations
	Rolling back software
	Adding, removing, or replacing ECUs
	Aftermarket ECUs

	Adding or removing a supplier
	Key compromise

	G. Enhanced security practices
	Restricting image installation with custom hardware IDs
	Preventing rollback attacks in case of Director compromise
	Broadcasting vs. unicasting metadata inside the vehicle
	Dependencies and conflicts between ECUs
	ASN.1 decoding
	Balancing EEPROM performance and security
	Balancing security and bandwidth
	Using encrypted images on the Image repository

